Generation and properties of snarks

نویسندگان

  • Gunnar Brinkmann
  • Jan Goedgebeur
  • Jonas Hägglund
  • Klas Markström
چکیده

For many of the unsolved problems concerning cycles and matchings in graphs it is known that it is su cient to prove them for snarks, the class of nontrivial 3-regular graphs which cannot be 3-edge coloured. In the rst part of this paper we present a new algorithm for generating all non-isomorphic snarks of a given order. Our implementation of the new algorithm is 14 times faster than previous programs for generating snarks, and 29 times faster for generating weak snarks. Using this program we have generated all non-isomorphic snarks on n ≤ 36 vertices. Previously lists up to n = 28 vertices have been published. In the second part of the paper we analyze the sets of generated snarks with respect to a number of properties and conjectures. We nd that some of the strongest versions of the cycle double cover conjecture hold for all snarks of these orders, as does Jaeger's Petersen colouring conjecture, which in turn implies that Fulkerson's conjecture has no small counterexamples. In contrast to these positive results we also nd counterexamples to eight previously published conjectures concerning cycle coverings and the general cycle structure of cubic graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of cubic graphs and snarks with large girth

We describe two new algorithms for the generation of all non-isomorphic cubic graphs with girth at least k ≥ 5 which are very efficient for 5 ≤ k ≤ 7 and show how these algorithms can be efficiently restricted to generate snarks with girth at least k. Our implementation of these algorithms is more than 30, respectively 40 times faster than the previously fastest generator for cubic graphs with ...

متن کامل

Relating Embedding and Coloring Properties of Snarks

In 1969, Grünbaum conjectured that snarks do not have polyhedral embeddings into orientable surfaces. To describe the deviation from polyhedrality, we define the defect of a graph and use it to study embeddings of superpositions of cubic graphs into orientable surfaces. Superposition was introduced in [4] to construct snarks with arbitrary large girth. It is shown that snarks constructed in [4]...

متن کامل

Smallest snarks with oddness 4 and cyclic connectivity 4 have order 44

The family of snarks – connected bridgeless cubic graphs that cannot be 3edge-coloured – is well-known as a potential source of counterexamples to several important and long-standing conjectures in graph theory. These include the cycle double cover conjecture, Tutte’s 5-flow conjecture, Fulkerson’s conjecture, and several others. One way of approaching these conjectures is through the study of ...

متن کامل

Diana Sasaki Simone Dantas Celina

Snarks are cubic bridgeless graphs of chromatic index 4 which had their origin in the search of counterexamples to the Four Color Conjecture. In 2003, Cavicchioli et al. proved that for snarks with less than 30 vertices, the total chromatic number is 4, and proposed the problem of finding (if any) the smallest snark which is not 4-total colorable. Several families of snarks have had their total...

متن کامل

6-decomposition of Snarks

A snark is a cubic graph with no proper 3-edge-colouring. In 1996, Nedela and Škoviera proved the following theorem: LetG be a snark with an k-edge-cut, k ≥ 2, whose removal leaves two 3-edgecolourable componentsM and N . Then bothM and N can be completed to two snarks M̃ and Ñ of order not exceeding that of G by adding at most κ(k) vertices, where the number κ(k) only depends on k. The known va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 103  شماره 

صفحات  -

تاریخ انتشار 2013